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LAUNCHER DYNAMICS STUDY

Part M I Pewl

(A Two Point Mass Moving on a Flexible Beam)

ABSTRACT

This report contains an approximate analysis of the motion of a flexible

launcher rail which is supported by a flexible understructure and is loaded

by a missile with two point contact which moves across the rail under the action

of a prescribed thrust force. The launcher system is represented by a uniform

flexible beam which is supported by linear springs and the missile is constrained

to remain in contact with the beam. A pair of coupled integral equations are

obtained which define the motion of the missile and a numerical technique of

integration is developed for their solution. Finally some numerical results are

presented to show the effects of some of the parameters on the motion of the missile

and the rail.
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List of Symbols

R (t) Thrust force on the missile

W Weight of the missile

m Mass of the missile

0E Angle of elevation of the rail

e (t) Position coordinate of missile on the rail

k i , k 2  Understructure spring rates

a, b Locations of springs with respect to rear of rail

c Total length of the rail

L Length between shoes of the missile

L1  Length from rear shoe to center of gravity of the missile

P (t), Q (t) Contact forces between the missile and the rail

E I F lexural rigidity of the rail

p A Mass per unit length of rail

J Principal transverse moment of inertia of the missile

dI  Length of guidance for two point contact

d 2  Total length of guidance

Other symbols are defined in the text when introduced.



CHAPTER 1

Development of Model

A typical straight rail missile launcher might appear as sketched in

Fig. 1. We replace this with the model shown schematically in Fig. 2. In

r p r J- r Y, i 7

Figure 1

the undeformed state the beam is straight, uniform, and at an elevation angle E

The x axis is taken along the undeformed axis of the beam and the y axis is

Figure 2
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generally downward. The beam is supported at two points by linear springs and

suitable constraints act to prevent axial motion of the beam.

We assume that the missile is a rigid mass which is forced to move along

the beam under the action of the prescribed force R (t). The motion of the mass

along the beam is measured by the coordinate C (t) as indicated in Fig. 2.

During the motion, two points of the missile are constrained to maintain contact

with the rail. At some later time Tp, with e (Tp )= d2 , the rear shoe also

leaves the rail and the missile is in flight. (It is possible for Tp and TQ to be

equal). We refer to Tp as the tipoff time and assume that all motion occurs in

the xy-plane and that the entire system is initially at rest.
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CHAPTER 2

Analytical Development of the General Problem

Consider the free body diagram shown in Fig. 3.

0

Figure 3

Referring to Fig. 4, let U be the rotation of the missile and y the

displacement of its center of mass. The equations of motion of the mass are

m y =--P-Q + m g cos E

I = LI P- (L - LI) Q
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If we let yp and yQ be the transverse displacements of the points of contact

then for small displacements and rotations of the missile

L- L-L- YQ + L- Yp

Figure 4

and therefore

P= m(g h-J3yp+JIYQ) (1)

Q - m(g d+J1 yp - J2 "Y*Q) (2)

where

L d L-L 1 m-L  L1 (L-L)-L"= d =h J, 4= L2
mL L

J2 ; a a o at o ( -- e -e-- g c ooe O

In order to obtain a good approximation of 6 (t) we integrate the equation
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me - R ; C(0) = C(0)- Zo

where R is assumed to be a known function.

For the beam of Fig. 3, the equation of motion is

E a4Y( +o+ pA a t) = P6(,x)+Q6(9+L,x) (3)
8x 8t

where 6 is the Dirac Delta or Unit Impulse function defined in the usual

manner, i.e.

0, x1 <x 2 <9
x2

f6(Qx) dx- x I < Cx 2

0, 9 -C xIu <x 2

Since the system is initially at rest, the rail's initial velocity yt (x, 0) is zero

and its initial displacement y (x, 0) is due to the static loads produced by the

mass m.

Assume that the solution of Eq. (3) may be written in the form

y (x,t x X(x) qn(t )  ;04CtmTQ (4)

~th

where Xn (x) is the n normal mode for the spring supported beam of Fig. 3,

and each qn (t) may be regarded as a generalized coordinate. The set of functions

n (x)) are the eigenfunctions of the equation

d4 Xn (x) 4 4 _ pA w2
4 Xnn(X) n El n (5)

dx

n 1,2,3,...
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subject to the appropriate boundary conditions for the beam. (The detailed

solution of this equation is given in Appendix A). wn is the nth natural frequency

for the beam. The set of functions {X (x)} also have the property

Xm (x) Xn (x) dx= m n (6)of , m= n

Having determined the functions Xn (x) we can expand the Dirac

functions in the following series
a*

6(, x) () x n (x) (7)

6 ( + L, x)- X Xn(9 + L) Xn(X) (8)
n=1

Using Eqs. (4), (7), and (8), Eq. (3) can be written

EI X n q+ An = P lXn ( ) Xn(X) + Q n ( +L)X n (x)

and with the use of Eq. (5) this expression becomes

'[n qn] Xn (x) +~C pa Xn (9 + L)] Xn (X)

Upon comparing coefficients of the functions jXn ( ,we obtain

+ q = p' Xn() + Xn( + L) , n = 1,2,3,... (9)
0.<t TQ

Since

y (x,0) =Xn (X) qn(O) 0

Yt (x, O) -n- x n (x) 4.n (0) =0
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it follows that the solutions of Eq. (9) are subject to the conditions

qn (0) = Xn (x) y (x, 0) dx (10)

in (0) 0 (11)

(An expression for q. (0) is derived in Appendix A). Thus the solution of

Eq. (9) becomes
t

qn (t) = qn (0) cos w t + A { ) Xn ( +Q (r) Xn (t) + sin W (t-t) dr

n - 1, 2,3,... (12)

Upon setting x = (t) in Eq. (4), we obtain the deflection of the point

of contact of the rear shoe:

yp M) = y(t ,t 0 _ n [t (t)] qn (t) (13)

n=1

Similarly for x e (t) + L, we find

yQ (t)=y( +L,t)= nXn [t(t)+L] qn(t) (14)

Then combining Eqs. (1), (2), and (14) and substituting this result into Eqs. (13)

and (14) we obtain the pair of coupled integro-differential equations in the

shoe deflections and their accelerations, i. e.
t

yp (t): e (t) +f[K, (t,, + K2 (tp (-r) + K, (t, r q )] dY (r

0O 44 t 4 TQ
t

yQ(t G(tof [K4 (t, r) + K5 (t, -r) .p (,r) + K6 (t,,t) YQ (,t01 d r (6

(16)
O~t Q
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where

o F(t)= x.[R(tIj n(O osw t

K (t, T) X [eg (t) sin w(t-) { X [K i  l Wt "=n n Xn [ "]+dXn [ gO') + ]

m X [g (t) sinnt="

K2 t' r = -= = n ( I g n (T ) + I]  = J3 X n [ "]

m nm sin wn (t-T)

(t,) p - Wn Ih Xn d 2X E(T)+LJ

K (tT) Xn [(t) + L] sin wn (t'T) h ] L[}K4( , = = p=== Wn jhXn [9(T" + d Xn [g() +13

m nx n (t) + L] sin w. (t-?) (] - [ +5St' p A W n  J Xn [9(.r) + I] "J3Xn [9 (T)

m x= Xn (t) + ] sin wn (t' ') (

o'(t,'r): p An Q? XjIn [t('r] "J2 Xn [9j(") + I

Note that the Ki (t, ') are non-symmetric kernels with the property Ki (t,t) : 0.

In order to put Eqs. (15) and (16) in a more tractable form, let

up (t)__M p (t)

UQ(t) M Q (t)

Then since the missile is initially at rest,

Yp(t =(t f(t - r) up () d T + yp (0) (21)

Q 0 (t - ") uQ () d T + yQ (0) (22)
of
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in which yp (0) and YQ (0) are the initial displacements of the shoes and are

computed from

yp (0) q n q(O) Xn (4 0

Y(0) -- n n(0) Xn ( 90 + L )

YQ(O

Therefore Eqs. (15) and (16) can be written in the form

Yp (0) F (t) + L (t, 7) + [K2 (t, 7) - (t-T)] Up (') + K3 (t,,') UQ (r)} dr" (23)

YQ (0) pG (t) +f{K4 (t) + K5 (t,') Up (r) + [K6 (t" ' ) - (t.T)] uQ(Tr)} d r (24)

These equations are to be solved for up (t) and uQ(t). (In the next section we

will present a numerical technique for obtaining appropriate solutions). The

motion of the missile is then computed from E s. (21) and (22) and the motion

of the beam can be obtained from Eqs. (4) after P and Q are determined from

Eqs. (1) and (2) and qn (t) is found from Eq. (12).

Eqs. (23) and (24) are applicable when both shoes of the missile are in

contact with the rail. When the front shoe loses contact with the rail, Q becomes

and remains zero. For this case we set

y(xt) Xn(X) q* n(t) TQ t<Tp (25)

obtaining

q*n +  n qn pA Xn ( )  (2

n = 1, 2, 3,...
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subject to the continuity conditions q* n (TQ) q (T Q) and 4* n(T Q)=q n(T Q
i. e. the displacements and velocities of the beam are continuous. Therefore,

q* (t) = q (TQ ) cos n(t-TQ + - TQ in (t-Tnq Q n n Q Q

n
+ -rf P ( 'r) x (*] sin w (t - ) dr (27)

n = 1, 2,3....

TQ< t<Tp

where

P* = m - (28)

is found by setting Q = 0 in Eq. (2) , solving for , and then substituting
YQ

this result into Eq. (1).

Differentiating Eq. (13) twice we obtain
00p (t)- [Xn (6) qn (t) + 2 i n (e ) qn()X n ()n1

n= I

0O tATQ

and similarly, from Eq. (25) after setting x -e (t)
Y* p (t)= n _ n (e) q*n (t) + 2 in (6 ) q*n (t) + Xn (6) ", n 0t)

TQ44 t <Tp

If we set t = TQ in each of these equations and subtract, we find



(To)V~,(TQ) Q ~ Xje T) J X" [e (TQ)] - J, Xn [6(TQ) +L}
(T)=y T)+Q(TQ)~ * r.) (29)

PAJ 2 +mU1 +h d) Xn [ (TQ

where use has been made of Eqs. (1), (2), (9), (26), and (28) to simplify the

result.

In Eq. (25) we now substitute g (t) for x and proceed as before to obtain

the displacement of the rear shoe,

y*p (t) F F* (t) + (t , g - y*p (r] d r (30)

P TQ< t<TP

where

S n  -TQ)}x

K* 1 (t,r) = m ,,R sinw (t - 7)P AJ 2  ao n

(K*I (t, r) is also a non-symmetric kernel with the property K* (t,t) = 0 ).

If we now set

U*p (t) -- y*p (t)

then upon integrating,

Yp (t)= (t - TQ) [;p (TQ) +- (t - TQ) i]+ Yp (TQ) - (t-') [g-u'p (7-) dT

Therefore Eq. (30) can be written in the form

t
(t - TQ) [p (TQ) + ' (t - TQ) g+ yp (TQ)-- F T K*I (t. ")+ (t-)][-U'p(r)] dy

TQ4 tI Tp (31)
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For the condition of only the rear shoe in contact with the rail we obtain

a single integral equation which we must solve for g - u*p (t). (In the next

section we will present a numberical technique for obtaining appropriate solutions).

The motion of the system is now computed as before except that the determination

of uQ is replaced by the condition Q = 0.
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CHAPTER 3

Numerical Solution of Equations

An approximate solution of the equations of motion can be obtained in

the following manner. For definiteness, we suppose the thrust curve is as shown

in Fig. 5.

R,(t)

RMAX -- "

to TQ Tp

Figure 5

If to is the thrust buildup time and RMAX is the value of R (t) at to then

0 4Qt~gt o  
- R MAX t 3

0mt -"+-O0
m0  t

to  t R MAX t(t-t o ) A+ R t2

and

t /-m dI -to t 2

to + o

to 0 + d 2-to " 02

TPo - 72 m
MAX

Now we divide the interval 044 t< TQ into M equal intervals of time
T Q

At=: -4 in length. Observing that up(O) = tUQ (0) -- , Ki (tit) 0 , and applying



14.

the trapezoidal rule of integration, we obtain the following approximations for

Eqs. (15) and (16).

yp(0)- F(NAt) 0

At 2 K 1 (NAt, 0) 2, N M
N-2

+jlrK ! ( N A t , jAt)+ [K 2(N At, j At)-(N-J) At d up 0At)

+K 3 (NAt, jAt) uQ(jAt)}

+ K, [N At, (N-I) A] + {K 2 [N At, (N-I) Aj- At} up[(N-I) At]

+ K 3 [N At, (N-1) A t] uQ [(N-1) A t]

yQ (0) - G(N At) I
At K 4 (N+At, 0( 2A NtM

N-2

+ tK4 (N At, j At) + K5 (N At, j At) U(j At)

+ [K 6 (N AtjAt )-N -J) AtuQ iAt~

+ K4 [N A t, (N-I) At]+ K5 EN At, (N-I) At] Up [(N-I) At] (33)

+ N K6[ t, (N-I) Al] - Atj Q [(N-I) At]

We begin the numerical process with N = 2 and then use successive substitutions

to carry out the numerical integration to N = M. The advantage of using this

form for the equations is that they are recursive in nature and therefore do not

involve the inversion of a matrix for their solution. The bulk of the computations

will be in computing the kernels K, (t, r) at the various sub-intervals of time.
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The sums on j create no large amount of computation because the kernels can

be rewritten so that the corresponding values at j + I are obtained from those

at j by adding a term.

Because Ki (t, t) = 0, we use Eqs. (32) and (33) to compute up (t) and

uQ (t) only up to TQ - At. In order to compute the values at T a second degreeQ Q
polynomial is fitted to the preceeding three values resulting in the formulae

up (TQ) up [(M-3) A t] + 3 {up [(M-1) at] - up [(M2) At]}

uQ(TQ) uQ [(M-3)& t] + {Q [(M-1) at] - uQ [(M-2) At1]}

The main factor influencing the choice of the number of subdivisions

M I is the factor sin w (t - r) = sin w (N-J) At in each kernel. InAt n n
numerical computations we have to truncate the series expressions at some

value n = p. Then the factor sin wp (t - r) could range over many complete

cycles in the interval 0 < t < T . w (n-J) A t changes by the amount W At
Q* p p i

with each increase in j and prudence demands that, at the very least, wp At <.

(In the computations made, the worst case had five points per cycle in the third

mode, i.e. p= 3wasuse4.

For Eq. (31) we divide the interval TQ< t < Tp into M* equal intervals

of time At* M* in length. Observing that K*I (t, t) = 0 , the

trapezoidal rule of integration applied to Eq. (31) yields
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N*At* [jP(T)+'N*Atgj]+yp(T )-F(T +N4at*)
At*

2 1 N*4 T

- [K* (TQ+ N*At*, TQ)+N* A*] [j -up (TQ (34)

N*-2

+ [K* 1 (TQ +N* At*, TQ +j at*) +(N* -J) At*][rg - P (Q + Atl)
J=t

+{K* I rQ +N* At, TQ +(N*-) at] +Atl}{ -u*~ P TQ +(N*-1) Atli

where we have set t = TQ + N* A t*. We begin the numerical process with

N* = 2 and carry out the same resubstitution process that was used in Eqs. (32)

and (33). Since Eq. (34) can be used only up to Tp- At*, we again compute

the value at Tp from a second degree polynomial approximation. The time

interval A t* is chosen comparable to At by taking M* as the next integer larger

than (Tp - TQ)/M TQ .

Having detertnined the values of Up, UQ , and - u*p at each of the

sub-interval points, we are in a position to determine values for the following

parameters. Each of the indicated integrations may be carried out using

Simpson's rule for example, and only p normal modes are considered in the

series expansion.

For " , the pitch angle of the missile

( f(t-r) [UQ()- up(r)] dr, 0 t TQ
(0 + - T! [.

-T (T )(T )+ (t-r) - UO P ()] d r, TQ t% Tpt- TQ f" (TI) +Q

Q
For ,the pitch velocity of the missile
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(TQ)+ fgUp(] dT TQ t4Tp

Q
For y, the center of gravity displacement of the missile

t

(0)+f(t-T) [hUp(1()+dUQ(T)] dT, O tATQ

-t-TQ) (TQ) + Y (TQ) + J2 h d ( , ()] d T

TQ%< t 4Tp

6

For y , the center of gravity transverse velocity of the missile

[h UP(T) +d uQ (T)] dr T<, O t 4TQ
y W -_ J1 ;+hd f[t]y(TQ) + (t - TQ) g - 2[g U*p() TQ< t4CT

For YTIp , the tip displacement of the rail

p

Z- n q)q n(t 04Ct <TQ

For YTP , the tip transverse velocity of the rail

Xn (c) *n (t) , T t T

F n=l
For Y'TIP , the tip angular displacement of the rail
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n n TQCt4CTQ

For the tip angular velocity of the beam
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CHAPTER 4

Numerical Results

Table I gives the nominal values of the parameters specifying a

particular system.

Table I

Parameter Description Value

k I  Rear spring support O

k2  Front spring support 9,230 lb/in

a x coordinate of k 46 in

b x coordinate of k2  160 in

c Total rail length 328 in

EI Flexural rigidity of rail 54 x 103 lb-in2

pA Mass per unit length of rail 0.018325 lb-sec 2/in-in

eE Angle of elevation of rail 0. 8 rad

L Length between shoes of missile 144 in

LI  Length from rear shoe to center of

gravity of the missile 100 in

W weight of missile 4150 lb

J Principal transverse moment of

inertia of missile 41, 200 lb-sec 2in 2/in
to x coordinate of rear shoe at t = 0 4 in

RMAX Maximum thrust force on missile 124, 686. 6 lb

di Length of guidance for two shoe contact 180 in

d2  Total length of guidance 180 in

to Thrust build-up time 0. 100 sec
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The following variations of the nominal value s were also considered

Table 2

System Parameters Changed

I
Soft beam E I = -2 (El )nom

IStiff beam E I = - (EI) nom

Soft spring k 2 = (k 2 ) nom

Stiff spring k 2 = 10 (k2) nom

Short overhang b = (c ) nom

2 (-')2nom (k2 nom

Short tipoff d2 = 1.01 (d1 ) nom

Long tipoff d2 = (d) nom  + (L)nom
I

Light beam p A = . (pA) non

Heavy beam p A = 2 (pA) nom

For the nominal system results were computed using one, two and

three modes. The results for "9 and i are shown in Figs 6 and 7. For the

parameters involved, two modes apparently furnish values as accurate as three.

Figs 8 through 15 present graphically the results obtained for the systems

given in Tables I and 2. Three modes were used in all of the computations.

The effect of long and short tipoff are given in Table 3.
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Table 3

Nominal Short Tipoff (Tp = 222. 7) Long Tipoff (Tp = 283. 1)

3.300 10.320

24.960 199. 210

y 0.061 0. 142

y 0.944 1.742

YTP 0.074 .057

YTIp 0.342 -0. 513

Y'TIP 3. 340 2. 670

Y'TIP 4.690 2. 770

The natural frequencies of the unloaded beams in the above systems are

also of interest. These are presented for the first three modes in Table 4.

Table 4

System Natural Frequency, cycles/sec

fl f2 f3

Nominal 4. 6 52. 6 156. 3

Soft beam 4.6 37.7 110. 5

Stiff beam 4.7 73.8 221.0

Soft spring 3. 3 52. 2 156. 3

Stiff spring 13.0 58.9 156.3

Short overhang 4. 7 52. 1 156. 3

Short tipoff 4.6 52.6 156.3

Long tipoff 4.6 52. 6 156. 3

Light beam 6.6 74.3 221.0

Heavy beam 3.3 37.2 110.5
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APPENDIX A

Solution for Eq. (5)

Fig. A. I shows the beam of Fig. 3 in an unloaded state.

kI kx2 x

b I

4r r

Y Figure A. I

The nth normal mode Xn (x) for this spring supported beam are the

eigenfunctions of the equation

d X n .- 4  X =0 (A. I)d x

whose general solution is

Xn (x) -A'n sin "n x + B'n cos An x + C'n sinh . x + D'n coshX n x (A. 2)

Since both ends of the beam are free, we must have

X n (0) = X"'n (0) = Xn" (c) = X"'n (c) = 0 (A. 3)

At the supports, L.e. at x = a and x = b, Xn (x), X'n (x) , and X"n (x)

must be continuous and
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E IX"' (a ) -E IX11' (a+ )- k Xn(a)=O0 (A. 4)

1 n (b)-EIX" 2 Xn ()=(.5

In view of Eqs. (A. 4) and (A. 5) we make the following definitions

O4x~a: Xn (x) = (x) = An sin An (a-x) +B ncos A n (a-x) +C nsainh A n(a-x)

+ Dn cosh An (a-x) (A. 6)

a4 xgb: X n(x) = IA (x) =E nsin An x +F nCosAn x + G sinhAn x

+ H cosh A x (A. 7)

b~x~g c: Xn (x) = n (x) =In i aAn (x-b)+ Jn cosAn (x-b) +K nsinhAn (x-b)

+ Ln cosh An (x-b) (A. 8)

Satisfying the conditions on Xn (x) at the supports k Iand k 2results in

An -~E Cos An a + F sinA a+n a (a)

B n ~E nsin A n a + F n Co An a

Cn ~G n coshAn a -H nsinhA a -aA ntu (a)

Dn zG, sinh A a + Hn coshAn a

in E n coAn b -F nsinA nb -I P ntu (b) (A. 9)

in E nsin Xn b +F ncoolA b

Kn G ncosh An b-H n sinh An b -P a n ;'n (b)

Ln :G nsinhAn b +H ncoshAX b
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where

I k k 2T
;Xn

Using Eqs. (A. 9) we now have

O4x~ga: X~ n(W)0 (x) = % (x) + a An IL(a) [sin X n (a-x) - sinh Xn(a -XI (A. 10)

a 4x4b: K (x) = ILn(x) = En sin Xn x + Fn cos xn x+G n sinh X n x + Hn cosh Xn x (A. 11)

b4 xc: Xn(x) = rn(X) = (x) -TI A n Mn(k* [sin Xn (x-b) + ,inhl.,n (x-b)] (A. 12)

From the end conditions of Eq'. (A. 3) we then have

En a An sinX n a (sinX Xn a + sinh X n a )

+F, [I+a A n Cos Xn a (sinx a+sinhXn a)]

+ Gn a An s nh Xn a (sinX n a + sinhX n a)

+H n [aAn coshXna(sin Xna+sinhn a)- i] =0

En [a An sin Xn a(cos X n a+ cosh 'n a)-

"n a an COB A n a (Cos Xn a + cosh 'n a

"+G n  + a An sinh X n a (cos n a + cosh Xn a)]

+ H. a An cosh ?n a (os Xn a + coshn a) = 0
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En - sin An C + P An sin An b [sin An (c-b) - sinh An (c-b)]j

+Fn cOSAnc+PAn CosAn b [sin An (c-b) -sinh A (C-b)

+Gn {in'B1n Ac+P An sinh Anb [sin An(c-b) -sinh An (c-b)j

+Hn{COshnc+ PAn cOsh Anb [sin An (c-b) - sinh An (c-b)} =-0

En cosAn C+ PAn sin n b [Cos An (c-b) - cosh An (c-b])J

+F n sin\nc+ An Cos An b [cos An(c-b)- coshAn (c-b)])}

+ Gn cosh An c +P An sinh Xn b [cos An (c-b) - cosh n (cb)j)

+H n sinh Anc+PAn coshAnb [cosAn (c-b)-coshAn (C-b) I=O

These last four equations are a homogeneous set and for non-zero values of

En, Fn , Gn , and Hn the determinant of the coefficients must be zero. The

roots A n of this determinant are the eigenvalues for the problem

We solve the homogeneous equations in the form

En = en zn

Fn = fn Zn

Gn = gn z.

Hn = hn z n

where at least one of the en , f gP and hn is one. Then we choose the value

of z such thatn
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2 3 X' X" x (X,,)2(x n x [ X2 -4 X1X,,1"n 4n + ---I "~
0fX:(X(X) Xd n n n- x ±-~X")

2x -- xt 11
-T n J

n

For this problem this means that z is chosen such that

1 {6a n [1n (a)] - 4aal' n(a)% n(a)

+ 6 P A n  [ n (b )] 2  4 b A' ( b) JA P ) +c i (c ] 2 }

To prove that

0 J (X) Xn (x) dx=0 for m i n

we write

x XIV - n4 x x =0

in n n min

Xn XIV " xm 4 Xm Xn = 0

Subtracting and integrating over the length of the beam results in

(X4n . 4 _ fX (X)x(x)dx = XIV -xlV )dx
n m0 fmX Xn ( -  0 (mx "X m)d

Integrating the right hand side by parts yields
(A4n')'4n)f m(X)Xn(x) dx : [ms' m*'mh" + ["min"'m "n'm

0 a a

b,0

+ m a1 nimi [nn

- [ n JA Jm~ - , 'n / n~ a m - l
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And upon applying the conditions on *n (x), j n (x) , and ?n (x) we have

(A4n _X 4m ) OfXm (x) xn (x) d x = 0

4

Since in general X,4n -4m 0 then

JX (x X (x) dx = 0 for m jn

Thus proving the orthogonality of the beam functions {Xn (x)

For Eq. (10) we write

A4 nqn(0) =j x IV (x) y(x, 0) dx

0 fx

Integrating by parts results in

X4n qn (o)= Ex'n (x) y (x,0) - X"n (x)y' (x, 0) + x, n (x) y" (x, 0) - Xn (X) y" (x, 0)

+fXn (x) ylV (x, O) d x.

For a beam statically loaded with concentrated loads ylV (x, 0) is zero and

for the beam of Fig. A. I y (x, 0), y' (x, 0) , and y" (x, 0) must be continuous

and y"' (x, 0) satisfies the same discontinuity conditions which Xn (x) satisfies.

Therefore the final results for q (0) can be shown to be

m g Xn(o) + d Xn(eo + L (A. 13)n()=P A W 2 n
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